SPP1935 Logo

SPP1935 -- Deciphering the mRNP code :
RNA-bound Determinants of Post-transcriptional Gene Regulation

LoginLogin New userNew User LoginShare

laboratoriesDr. Hennig

Janosch Hennig Center
European Molecular Biology Laboratory (EMBL) Heidelberg

Meyerhofstrasse 1, 69117 Heidelberg


Send an Email

Online Website

dynamRBPomics: Structural and functional interactomics of temporally dynamic mRBPs active during Drosophila development

Colaboration with Dr. Anne Ephrussi and Dr. Christoph Müller


Recent interactome studies have accumulated a wealth of information about the formation of mRNP complexes, including mRNA binding protein (mRBP) specificity, identification of targeted mRNAs, and the discovery of novel mRBPs. However, two important issues have been so far neglected. First, comparison of the mRNA interactome at two different developmental stages, and second, a following up with coordinated structural genomics investigations. Our proposal will cover both. Information retrieved by the latter will be used as a feedback-loop to accelerate functional studies and mutational analysis in vivo. In short, preliminary data of mRNA interactome studies of Drosophila larvae at two different developmental stages identified all mRBPs. Interestingly, some of the mRBPs were active during the early developmental stage (2 hours) but not during a later stage (5 hours) and vice versa. Prior to further investigations, the number of mRBP candidates will be reduced to those, which indeed show this temporally dynamic mRNA binding, are featuring novel/non-classical RNA binding domains, and/or feature low-complexity regions, which affect their mRNA binding activity. To enable structural interaction studies, these filtered candidates will be subjected to CLIP studies to identify the cognate RNA sequence, which will be validated in vitro and in vivo. Near-high-throughput nuclear magnetic resonance spectroscopy (NMR) screening will be employed to identify protein residues, which bind directly to mRNA. This information will already enable rational mutational analysis in vivo to monitor the effect mutations have on the development of the fly. Furthermore, the screening will reveal which candidates are suitable for high-resolution structure determination by NMR or X-ray crystallography. These structures will provide a wealth of information, which can be translated to orthologous systems and further improves the rational design of mutations for in vivo studies. The mRBP-RNA complex structures will improve our understanding of the protein-RNA recognition code, especially considering that novel/non-classical RNA binding proteins are part of the repertoire. Moreover, structures and interaction studies of intrinsically disordered regions and proteins, also part of the candidate list, will reveal if and how they contribute to RNA binding. We hope that we will be able to discover what triggers temporally dynamic mRNA binding activity to get insight into how mRNP complexes regulate gene expression and development.

Focus of the group:
Integrated structural biology of RNPs


- Nuclear magnetic resonance spectroscopy
- Small-angle X-ray/neutron scattering
- X-ray crystallography
- Biophysics
- Molecular biology

PublicationsPUBLICATIONS :

Hennig J, Sattler M; Deciphering the protein-RNA recognition code: Combining
large-scale quantitative methods with structural biology. Bioessays, 2015; 37(8):899-

Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD, Sattler M; Structural
analysis of protein-RNA complexes in solution using NMR paramagnetic relaxation
enhancements. Methods Enzymol, 2015; 588:333-362.

Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M, Geerlof A, Gabel F,
Gebauer F, Sattler M; Structural basis for the assembly of the Sxl-Unr translation
regulatory complex. Nature, 2014; 515(7526):287-290.

Pfaff J, Hennig J, Herzog F, Aebersold R, Sattler M, Niessing D, Meister G;
Structural features of Argonaute-GW182 protein interactions. Proc Natl Acad Sci U
S A, 2013; 110(40):E3770-3779.

Hennig J,Wang I, Sonntag M, Gabel F, Sattler M; Combining NMR and small angle
X-ray and neutron scattering in the structural analysis of a ternary protein-RNA
complex. J Biomol NMR, 2013; 56(1):17-30.